In trigonometry, there are 2 special right triangles in which the trigonometric ratios of the angles will be always be exact values.

• The $45^{\circ} - 45^{\circ} - 90^{\circ}$ triangle

Using Pythagoras, we can determine the exact length of the hypotenuse

Therefore, the trig ratios for this triangle in Q1 are:

$$\sin 45^{\circ} = \frac{1}{\sqrt{2}} \qquad \cos 45^{\circ} = \frac{1}{\sqrt{2}} \qquad \tan 45^{\circ} = \frac{1}{1} = 1$$

• The $30^{\circ} - 60^{\circ} - 90^{\circ}$ triangle uses an equilateral triangle with side lengths of 2

Use Pythagoras to determine the exact length of the altitude

<u>To determine the other angles</u> in Q2, Q3 and/or Q4, you must use reference angles, so it's important that you <u>remember your CAST rule</u>.

Example 1: Determine the exact values of the following angles.

Example 2: Determine the exact coordinates of a point P(x, y) on the unit circle when $\tan \theta = \sqrt{3}$, and $\sin \theta$ and $\cos \theta$ is (-)ve

Example 3: Point $P(\sqrt{3}, -1)$, is on the terminal arm of a unit circle in standard position. What are the exact values of sin θ , cos θ , tan θ , and the measure of angle θ , in standard position?

Example 4: The graph shows an equilateral triangle whose vertices lie on a unit circle with center (0, 0). Determine the exact value of the trigonometric ratios at each vertex

Homework: